This article was downloaded by: [University of Haifa Library]

On: 20 August 2012, At: 10:59 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,

37-41 Mortimer Street, London W1T 3JH, UK

Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/qmcl19

Theory of the c-Axis Conduction and Longitudinal Negative Magnetoresistance in MoCl₅ GICs

Ko Sugihara ^a & Keiko Matsubara ^b

Version of record first published: 04 Oct 2006

To cite this article: Ko Sugihara & Keiko Matsubara (1998): Theory of the c-Axis Conduction and Longitudinal Negative Magnetoresistance in $MoCl_5$ GICs, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 310:1, 255-260

To link to this article: http://dx.doi.org/10.1080/10587259808045345

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

^a College of Pharmacy, Nihon University, Funabashi, Chiba, 274, Japan

^b College of Science and Technology, Nihon University, Tokyo, 101, Japan

Theory of the c-AxIs Conduction and Longitudinal Negative Magnetoresistance in MoCl₅ GICs

KO SUGIHARA® and KEIKO MATSUBARA®

^aCollege of Pharmacy, Nihon University, Funabashi, Chiba 274 Japan ^bCollege of Science and Technology, Nihon University, Tokyo 101 Japan

A general theory on the c-axis resistivity ρ_c and longitudinal magnetoresistance $\Delta\rho_d/\rho_0$ in graphite intercalation compounds (GICs) is presented and theory provides a reasonable explanation for the observed results of MoCl₅ GICs.

Keywords: graphite intercalation compounds; c-axis conduction

1. INTRODUCTION

In the past two decades, extensive studies were performed for various kinds of graphite intercalation compounds(GICs), however, the mechanism on the c-axis conduction is still in a controversy^[1]. We focus on the GICs with large A-value, where $A = \rho_c / \rho_a$ lies over a range of $10^3 \sim 10^6$ in acceptor GICs.

Our view on the c-axis conduction mechanism is as follows^[2,3]. Carriers in the π -band spend most of the time in the diffusive motion along the basal plane and occasionally make transitions to the adjacent graphite(G) layers with or without the intervening intercalate(I) layers. In the low stage GICs (stage n=1,2) the transition rate is given by $1/\tau \approx (H_{tr})^2/\hbar\Gamma$, where H_{tr} is the

transfer Hamiltonian across the intercalant layers and Γ/\hbar denotes the scattering rate in the basal plane. In the case of $H_{\rm p}$ being temperature independent the above relation explains the metallic T-dependence of $\rho_{\rm c}$ in the low stage since $\rho_{\rm c} \propto \Gamma$.

To come to a definite conclusion on the c-axis conduction mechanism, theoretical investigations are performed in this article. In Sec.2 the formula of ρ_c for stage-1 and 2 is derived and Sec.3 is devoted to the calculations on ρ_c and the longitudinal magnetoresistance for intermediate stage compounds.

2. c-AxIs Resistivity in Low Stage GICs

The c-axis conductivity $\sigma_c = \rho_c^{-1}$ is related to the diffusion constant D_c as $\sigma_c = e^2 D_c N(E_F)/V$; V: sample volume, N: density of states, (2.1) where E_F is the Fermi energy and $D_c = \ell_c^2/\tau_c$. ℓ_c denotes the diffusion length along the c-axis and $\ell_c = I_c$ (repeat distance) for stage-1. As discussed in Sec.1 $1/\tau_c$ is given by

$$1/\tau_c \approx (H_{\rm pr})^2/\hbar\Gamma \approx (N_{\rm f}/N)V_0^2/\hbar\Gamma. \tag{2.2}$$

where the transfer Hamiltonian is assumed in the form:

$$H_{r} = N^{-1/2} \sum_{c} V(z, r) \Delta(r - R_{a}).$$
 (2.3)

N denotes the number of unit cells, $\Delta(r-R_a)$ the two-dimensional(2D) Kronecker delta function, and V(z,r) is the scattering potential inducing the transitions across the intercalant layers. Equation(2.3) is a conduction path Hamiltonian introduced by Shimamura [3]. N_1 in Eq.(2.2) is the number of the conduction path and V_0 is the interlayer matrix element of V(x,r). We take a notice that the conduction path Hamiltonian in Eq.(2.3) should not be taken in the literal sence of the word. It implies a transfer Hamiltonian across the intercalant layers. A detailed calculation yields the formula for σ_c [4].

$$\sigma_{c} = -\frac{8\pi e^{2}d_{I}^{2}}{\hbar V} \left(\frac{N_{I}}{N}\right) \sum_{c} \sum_{k} V_{0}^{2}(i) \frac{\partial f(E_{i}(k))}{\partial E_{i}(k)} \frac{1}{\Gamma(E_{i}(k))},$$
(2.4)

where d_I denotes the thickness of GIG-sandwich layer, i the band index and f is the Fermi function. Γ includes a contribution from the electron-in-plane phonon interaction and so ρ_c shows a metallic T-dependence, which explains the behavior in low stage GICs (see: Fig.1).

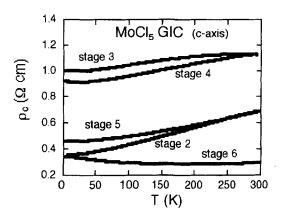


FIGURE 1 Temperature dependence of ρ_c for stage-2 to 6 MoCl₅ GICs.

3. c-Axis Conduction and Longitudinal Magnetoresistance for Intermediate GICs

The calculation is performed in terms of a series-resistance model:

$$\begin{cases} \rho_c \cong \left\{ d_I \, \rho_c (GIG) + d_G (n-1) \rho_c (GG) \right\} \\ (n-1) \rho_c (GG) = \sum_{i=1}^{n-1} \rho_{GG} (i, i+1) \\ I_c = d_I + (n-1) d_G \qquad (n > 3) \end{cases}$$
(3.1)

where d_G represents the distance between nearest graphite layers without an intercalant layer. $\rho_c(GIG)$ is given by σ_c^{-1} calculated in Sec.2. $\rho_{GG}\left(i,\,i+1\right)$ = $\sigma_{GG}\left(i,\,i+1\right)^{-1}$ denotes the resistivity corresponding to the transition $i \leftrightarrow i+1$ without across an intercalant layer.

The T-dependence of ρ_c changes from metallic-like to semiconductor-like with stage number n. To account for this feature, the T-dependent transfer Hamiltonian inducing i \leftrightarrow i+1 transition is introduced:

$$H_{GG} = H_{GG}^{(I)} + H_{GG}^{(e-p)} \tag{3.2}$$

where I denotes the elastic scattering term and e-p the electron-out-of phonon scattering. The expression for $\sigma_{GG}(i,i+1)$ becomes [4]

$$\sigma_{GG}(i, i+1) = \left(8e^2 d_G^2 / I_c \hbar^3\right) \left(m_i \Gamma_i^{-1} + m_{i+1} \Gamma_{i+1}^{-1}\right) A_{GG}(i, i+1)$$
(3.3)

$$A_{GG}(i, i+1) = \left| \left(i \mid H_{GG}^{(I)} \mid i+1 \right) \right|^2 + \left| \left(i \mid H_{GG}^{(e-p)} \mid i+1 \right) \right|^2. \tag{3.4}$$

Here, we employed an intuitive model that the i-th layer is described by a band with effective mass m_i . From Eqs. (3.3) and (3.4) we have $\rho_c = \left(\hbar^4/16e^2\right)$

$$\times \left\{ \left(d_{I} m_{b} \tau_{b} B_{GG} \right)^{-1} + \sum_{i} \left[\left(d_{G} / 2 \right) \left(m_{i} \tau_{i} + m_{i+1} \tau_{i+1} \right) A_{GG} (i, i+1) \right]^{-1} \right\}, \tag{3.5}$$

where $B_{GG} = N_I V_0^2/N$, m_b is the effective mass for the bounding layer, and τ_b is the corresponding basal plane relaxation time. $\left(m_i \tau_i + m_{i+1} \tau_{i+1}\right)$ decreases with T, while A_{GG} increases with T. $\rho_{GG}(i,i+1)$ term for the inter-interior transition plays a major role in ρ_c and it makes a bottleneck in the c-axis conduction because of the small charge density and small density of states in these layers. This explains the stage dependence in ρ_c vs T curve illustrated in Fig.1. This situation in ρ_c is essentially different from the one in ρ_a , since each layer contribution to ρ_a makes a parallel-resistance and the bounding layer with large carrier density plays a dominant role in the a-axis conduction.

Now we discuss the longitudinal magnetoresistance in terms of Eq. (3.1) which yields the equation:

$$\Delta \rho_{cL} / \rho_0 = -\left\{ d_i r_b \left(\Delta \sigma_{GIG} / \sigma_{GIG} \right) + d_G \sum_i r(i, i+1) \left(\Delta \sigma_{GG}(i, i+1) / \sigma_{GG}(i, i+1) \right) \right\} I_c^{-1}$$
 (3.6)

 $r(i,i+1) > r_b$. Consequently the negative magnetoresistance is expected from this term since the condition:

$$L_0 << L_H << L_m$$
 , $L_H = \sqrt{\hbar c/4eH}$ (3.8)

is satisfied at low temperature and in weak magnetic field, where L_0 and L_{in} represent the diffusion length for the elastic scattering and inelastic scattering, respectively^[5]. Figure 2 illustrates $\Delta \rho_{cL}/\rho_0$ for stage-4 MoCl₅ GIC and the similar behavior was obtained in stage-5^[6].

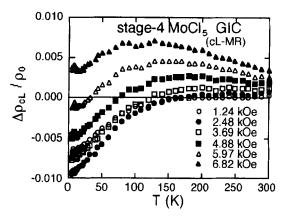


FIGURE 2 Temperature dependence of c-axis longitudinal magnetoresistance for stage-4 MoCl₅ GIC.

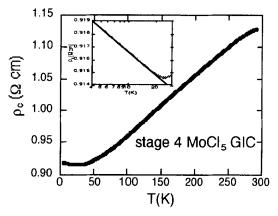


FIGURE 3 ρ_c vs T curve for stage-4 MoCl₅ GIC, where ρ_c vs $\log_{10} T$ is shown in the inset.

On the other hand stage-2 MoCl $_5$ GIC does not exhibit the negative magnetoresistance since the bounding layer with large density of states does not satisfy Eq.(3.8). logT-dependence of $\rho_{\rm c}$ vs T curve in the intermediate stage GICs provides an evidence for the weak localization effect ^[6] (see: Fig.3). In contrast with the c-axis conduction no negative transverse magnetoresistance $\Delta\rho_{aT}/\rho_0$ and no logT-dependence in ρ_a were observed

irrespective of stage number. This is due to the situation that ρ_a is expressed by a parallel-resistance model and the bounding layer contribution is predominant in the a-axis conduction.

Finally we present the following comment. The present paper does not claim that the bounding layers do not give rise to a negative magnetoresistance and logT-dependence in GICs. Actually, these results were observed in the low-stage acceptor fiber GICs. However, they are related to the basal-plane conduction process and not related to ρ_c mentioned in the present paper. Most important point in our article is that ρ_c and $\Delta\rho_{cL}/\rho_0$ are related to the basal plane conduction process.

Reference

- [1] B.Sundqvist, O.E. Andersson, E. McRae, M.Lelaurain and J.F. Mareche, J.Mater. Res. **10**, 436 (1995) and its references.
- [2] K. Sugihara, J. Phys. Soc. Jpn. 62, 624 (1993)
- [3] S. Shimamura, Synth. Met. 12, 365 (1985)
- [4] K. Sugihara, K. Matsubara, I. S. Suzuki and M. Suzuki; K. Matsubara, K. Kawamura, K. Sugihara, I. S. Suzuki and M. Suzuki, submitted to Phys. Rev.B
- [5] P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 387 (1985)
- [6] M. Suzuki, C. Lee, I. S. Suzuki, K. Matsubara and K. Sugihara, Phys. Rev. B 54,17128 (1996)
- [7] L. Piraux, V. Bayot, X. Gonze, J.-P. Michenaud and J.-P. Issi, Phys. Rev.B 36, 9045 (1987); V.Bayot, Dissertation of Doctor of Applied Science, 1991. Catholic University, Louvain.